Santa Cruz Works

View Original

New Research Explores Opportunities for Eliminating Equity Gaps in CS Gateway courses

By Emily Cerf via UCSC NewsCenter

Addressing “gateways within gateway courses,” specific factors that hold able students back from success in introductory courses, may provide a path forward for closing equity gaps for students pursuing engineering degrees.

Carmen Robinson (left) and Narges Norouzi, who are leading research into gateways in introductory engineering courses, at the 2019 Celebration of Diversity in Computing Conference.

Introductory engineering courses often serve as barriers to students’ success in pursuing their chosen degrees, causing attrition rates that are disproportionately high amongst students of color, women, first-generation students, and students who have experienced inequitable systems financially, educationally, and socially.

New studies led by Director of Student Excellence, Engagement, and Inclusion at the Baskin School of Engineering Carmen Robinson and Computer Science Assistant Teaching Professor Narges Norouzi identify Computing Assembly, a required course for most UCSC engineering students typically taken in the first year, as the main gateway course with wide and persistent equity gaps. As an increasing number of incoming students at UC Santa Cruz are choosing to study computer science, the new research reveals how motivation and a sense of belonging within the engineering community vary among students and are often tied to academic measures of success.

“We have students who are super talented, who have these great abilities, but they are being held back in some space,” Robinson said. “So, how do we fix that? How do we make sure that we move them all the way through to get a degree?”

Years of research and programming

In 2019, Robinson conducted a student experience study, including a survey among all Baskin Engineering students, to investigate factors that are influencing students' ability to declare and complete an engineering degree. The study included one-on-one interviews, focus groups, and institutional data. The survey asked about students’ demographics, concerns about their daily lives, if and how much the students were working, what support they might be getting from family, and how much academic preparation they had coming into introductory courses.

“We essentially looked into the survey data, particularly pre-college mathematics and programming preparation as well as science motivation and growth mindset indicators,” said Norouzi. “What we noticed was a disproportionate pre-college preparation gap between students from different demographic groups. Inspired by the data, we got interested in bridging that preparation gap.”

The results led Robinson and Norouzi to establish a summer program to review math and programming concepts for incoming students identified as having varied preparation. The program, called Baskin Engineering Excellence Scholars (BEES) and with Norouzi as the faculty lead, was run virtually during the summer of 2020 and 2021, and in 2022 will be held in person for the first time.

The 50 incoming students in this year’s program will attend programming and mathematics lectures, participate in problem-solving sessions, and end their days with team-building activities. They will also be introduced to on-campus resources such as Counseling and Psychological Services (CAPS) and the Disability Resource Center (DRC) and participate in activities to build confidence and a sense of belonging.